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Abstract. We show that the well known fact concerning a coincidence between the leading-
order WKB and exact quantum mechanical results for an energy spectrum of the Morse
Hamiltonian is due to the following property of the bound-state wavefunctions in the complex
plane. The logarithmic derivatives of the bound-state eigenfunctions of the Morse Hamiltonian
are periodic functions with a pure imaginary period. We show that the Morse potential is the
only potential having this property in the following class of potentials:U(x) =∑n=2m

n=0 une−anx .

1. Introduction

The semiclassical Wentzel–Kramers–Brillouin (WKB) method (Bender and Orzag 1978)
provides an efficient tool for finding approximate energy eigenvalues of one-dimensional
Hamiltonians. The method was designed to treat quantum mechanical systems in the
semiclassical region of large quantum numbers. However, it turned out that for some
systems the semiclassical treatment reproduced exact quantum mechanical results. A well
known example of a one-dimensional quantum mechanical system for which the standard
leading-order WKB quantization condition∫ xb

xa

√
2(E − U(x)) dx = π(n+ 1

2) (1)

yields exact energy spectrum is the harmonic oscillator. Another example is the system
described by the Morse Hamiltonian

Ĥ = −1

2

d2

dx2
+D(e−2ax − 2e−ax) (2)

wherea andD are positive constants. Several modifications of the quantization condition
(1) have been proposed in order to enlarge a set of Hamiltonians for which the semiclassical
treatment yields exact energy spectrum.

An approach to construct a modified semiclassical quantization condition was realized
in the framework of the supersymmetric quantum mechanics (Comtetet al 1985, Frickeet
al 1988, Duttet al 1986, Cooperet al 1995). The modified leading-order supersymmetric
quantization condition has been shown to reproduce (Eckhardt 1986, Khare 1985, Kasap
et al 1990) exact energy spectrum for a class of solvable potentials (i.e. solutions can be
expressed in terms of easily calculated special functions).

A modified quantization rule proposed by Bruev (1992) reproduces an exact energy
spectrum for the same class of solvable one-dimensional Hamiltonians. This modification
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of the standard WKB quantization procedure has been achieved by taking into account
the phase distortions of the WKB functions. Sergeenko (1996) derived a modified wave
equation. An application of the leading-order WKB quantization condition to this equation
yields exact energy eigenvalues for all solvable spherically symmetric potentials.

In this paper we shall be concerned with the standard leading-order WKB quantization
rule (1) and its applications to one-dimensional Hamiltonians. The question we shall
be interested in is, why formula (1) reproduces exact energy spectrum for the Morse
Hamiltonian.

2. WKB quantization of the Morse Hamiltonian

The well known formula

n = 1

2π i

∫
C

y ′

y
dx (3)

yields the number of zeros ofy(x) lying inside the closed contourC. Let the functiony(x)
be a wavefunction of a bound state of some Hamiltonian with the potentialU(x) and the
contourC in (3) chosen so that it encircles only the real zeros ofy(x). It is known (Dunham
1932) that equation (3) can be used for the purposes of a semiclassical quantization. If in
addition to all zeros ofy(x), the contourC also contains the classical turning points and
no other singular points ofy(x) then, substituting the leading-order WKB expression for
y(x) under integral (3) one obtains the quantization condition (1). Therefore, if the contour
of integration in (3) could be chosen so, that substituting the standard leading-order WKB
expression fory(x) under the integral, one could obtain the exact value of integral (3), the
quantization rule (1) would reproduce exact energy spectrum.

Bertocchi et al (1965) have shown that this situation is realized in the case of the
harmonic oscillator. All zeros of the bound-state wavefunctions of the harmonic oscillator
are on the real axis. Therefore, one can choose as a contourC a circle of an arbitrary large
radius|x| = R not changing the value of the integral. One can show that the logarithmic
derivative ofy(x) in equation (3) satisfies the following estimation:

y ′(x)
y(x)

= y ′(1)(x)
y(1)(x)

+ o(|x|−1)

when |x| → ∞. In this expressiony(1)(x) is the first-order WKB approximation to
the wavefunction of the harmonic oscillator. Thus, substituting the first order WKB
wavefunction under the integral (3) and taking the limitR → ∞ one obtains the exact
value of the integral. One can show (Ivanov 1996) that the harmonic oscillator and Coulomb
potentials are the only potentials belonging to the certain class, for which the bound-state
wavefunctions only have a finite number of zeros in the complex plane.

The wavefunctions of the Morse Hamiltonian have an infinite number of zeros in the
complex plane. Nevertheless, as we shall see, in this case one can choose the contour
of integration in (3) so, that the integral can be evaluated exactly with the help of the
leading-order WKB wavefunctions.

Energy spectrum and the bound-state eigenfunctions of the Morse Hamiltonian (2) are
given by (Landau and Lifshitz 1977)

En = −D
[

1− a√
2D

(
n+ 1

2

)]2

y(x) = e−ξ/2ξ sF (−n, 2s + 1, ξ)

(4)
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Figure 1. Contour of integration in equation (3).

where: ξ =
√

8D/a2e−ax , s =
√

2D/a2 − n − 1
2, F(α, β, z)—a confluent hypergeometric

function. The bound-state wavefunctions (4) are entire functions ofx. From equation (4)
one can see that they possess the following property

y

(
x + 2π i

a

)
= eµy(x) (5)

whereµ is some constant. The logarithmic derivativev(x) = y ′(x)/y(x) of the function
y(x) is therefore a periodic function ofx

v

(
x + 2π i

a

)
= v(x). (6)

Let us choose as a contourC in formula (3) the contour shown in figure 1. The partsC2

andC4 of this contour are the straight linesy = iπ/a and y = −iπ/a respectively. The
partsC1 andC3 are the straight linesx = −d andx = d. For sufficiently larged all real
zeros ofy(x) are situated insideC. Because of the periodicity ofy ′(x)/y(x) the integrals
alongC2 andC4 are equal in modulus and opposite in sign. Therefore, formula (3) yields

n = 1

2π i

(∫
C1

y ′

y
dx +

∫
C3

y ′

y
dx

)
= 1

2π i

(∫ −d−iπ/a

−d+iπ/a

y ′

y
dx +

∫ d+iπ/a

d−iπ/a

y ′

y
dx

)
. (7)

If parameterd is so large thatC encircles all real zeros ofy(x), integral (7) will not vary
if d increases further on. Let us consider first the integral along the contourC3. The
asymptotic form of the logarithmic derivativev(x) of the bound-state wavefunctiony(x) of
the Morse Hamiltonian can be obtained with the help of the standard methods of the theory
of ordinary differential equations (Kamke 1961). One can show that this asymptotic form
is

v(x) = −√−2E +O(e−ax) x ∈ C3 d →∞. (8)

The first-order WKB expression forv(x) is given by the known formula (Landau and
Lifshitz 1977)

v(1)(x) = −
√

2D(e−2ax − 2e−ax)− 2E + Da
2

e−2ax − e−ax

D(e−2ax − 2e−ax)− E . (9)

Expanding the expression on the right-hand side of equation (9) one can see that

v(x) = v(1)(x)+O(e−ax) x ∈ C3 d →∞. (10)
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Therefore, for the integral along the contourC3 one obtains

lim
d→∞

∫ d+iπ/a

d−iπ/a
v(x) dx = lim

d→∞

∫ d+iπ/a

d−iπ/a
v(1)(x) dx = −√−2E

2π i

a
. (11)

Consider now the integral along the contourC1. For large negative values ofx in the
classically forbidden region the asymptotic form ofv(x) can be shown to be

v(x) =
√

2De−ax −
√

2D + a
2
+O(eax) x ∈ C1 d →∞. (12)

The first-order WKB expression forv(x) is given for large negative values ofx by the
formula

v(1)(x) =
√

2D(e−2ax − 2e−ax)− 2E + Da
2

e−2ax − e−ax

D(e−2ax − 2e−ax)− E . (13)

From equations (12) and (13) one obtains

v(x) = v(1)(x)+O(eax) x ∈ C1 d →∞. (14)

Therefore, for the integral along the contourC1 one obtains

lim
d→∞

∫ −d−iπ/a

−d+iπ/a
v(x) dx = lim

d→∞

∫ −d−iπ/a

−d+iπ/a
v(1)(x) dx = 2π i

a

√
2D

(
1− a√

8D

)
. (15)

When deriving equation (15) we took into account that integrals of an exponential function
along its period vanished and therefore, only the constant terms in equation (12) contributed
to integral (15).

Using equations (7), (11) and (15) one obtains finally√−2E =
√

2D − a(n+ 1
2). (16)

It is easy to see that equation (16) reproduces the correct energy spectrum of the Morse
Hamiltonian (2). Since equations (11) and (15) were obtained with the help of the first-order
WKB expressions, the WKB quantization rule (1) yields the correct result for an energy
spectrum of the Morse Hamiltonian (rule (1) is obtained when first-order approximations of
v(x) are used).

3. Uniqueness of the Morse potential

We have seen that the periodicity of the logarithmic derivative ofy(x) was crucial for
the success of the leading-order WKB quantization formula (1). One should note that this
property is quite typical for the certain class of second-order differential equations. Let us
consider the one-dimensional Schrödinger equation

d2y

dx2
= 2(U(x)− E) (17)

whereU(x) is a meromorphic periodic function ofx. Such equations are known in literature
as Hill equations (Kamke 1961). In equation (17) we need only consider the case ofU(x)

having a pure imaginary (or real) period, otherwise the functionU(x) would be complex
for real values ofx.

According to the Floquet theorem (Kamke 1961), equation (17) with periodic function
U(x) always has a solution possessing the property of a periodicity of the logarithmic
derivative. The problem is, can this solution be made normalizable for some values ofE?
If it were the case then one might expect the WKB quantization condition (the leading-order
rule (1) or its higher-order WKB versions (Kreiger and Rosenzweig 1967)) to reproduce
the energy spectrum of equation (17).

We are going to prove the following statement.
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Theorem. Let the potentialU(x) in equation (17) be the polynomial of a degreek in the
variableu = e−ax : U(x) = Uk(u), wherea is a positive constant andk is an even integer.
Let an eigenfunctiony(x) of the eigenvalue problem (17) have a finite number of zeros in
the stripG : | Im(x)| 6 π/a. Then,y(x) can have periodic logarithmic derivatives if, and
only if, U(x) is a polynomial of second degree, i.e.U(x) is the Morse potential.

Proof of the theorem. SinceU(x) is also an entire function,y(x) is also an entire function.
The function v(x) = y′(x)/y(x)—logarithmic derivative ofy(x)—is a meromorphic
function of x having poles at the points wherey(x) has zeros. For the polynomial in
u = e−ax potentialU(x) the semiclassical approximation is valid fory(x) when |x| → ∞
remaining in the stripG. Sincey(x) is presumed to be normalizable, the leading-order
WKB formulae forv(x) yield:

v(x) ∼ c1 |x| → ∞Re(x) > 0 x ∈ G (18a)

v(x) ∼ c2 exp

(
−kax

2

)
|x| → ∞Re(x) < 0 x ∈ G (18b)

wherec1, c2 are some constants. Thus, the functionv(x) tends to a constant when|x| → ∞,
x ∈ G,Re(x) > 0, andv(x) tends to infinity when|x| → ∞, x ∈ G,Re(x) < 0. In addition,
in the conditions of the theorem,v(x) is a meromorphic function having a finite number of
zeros in the stripG : | Im(x)| 6 π/a. We shall now use the known result of the theory of
meromorphic functions (Markushevitch 1968), stating that the meromorphic functionv(x)

possessing the above-listed properties must be a rational function of the variableu = e−ax

v(x) = p0+ p1u+ · · · + pmum
q0+ q1u · · · + qnun = Pm(u)

Qn(u)
(19)

wherePm(u),Qn(u) are some polynomials. The result, quoted from Markushevitch (1968),
can be understood if one considers the following change of the variable:−ax = ln t . One
can show that under this change of the variable,v(x) goes onto the meromorphic function
ṽ(t). Conditions (18) expressed in terms of the variablet imply that the functionṽ(t) is
regular or has a pole att = ∞. The well known result of the theory of meromorphic
functions is that a meromorphic function which is either regular or has a pole at infinity
must be a rational function.

Consider the Riccati equation forv(x) following from equation (17)

dv

dx
+ v2 = 2(U(x)− E). (20)

Substituting expression (19) into equation (20) one obtains after simple calculation

−au
(

dPm
du

Qn − Pm dQn

du

)
+ P 2

m = 2Q2
n(Uk − E). (21)

The coefficientpm of the polynomialPm(u) can always be made equal to unity by
dividing Pm(u) and Qn(u) by pm. Therefore in equation (21) there arem + n + 2
variables (m coefficients ofPm(u), n + 1 coefficient ofQn(u) and energyE). To satisfy
equation (18b) one should demand:m = n+ k/2. Therefore, the maximum degree of the
polynomials in equation (21) is 2n + k and equation (21) yields 2n + k + 1 equations for
m + n + 2 = 2n + 2+ k/2 variables. For these equations to have solutions we should
demand

2n+ k + 16 2n+ 2+ k
2
⇒ k 6 2. (22)

Since in the conditions of the theoremk was assumed to be an even number, there is only a
possibility of satisfying equation (21):k = 2, the polynomialU2(u) is the Morse potential.
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As we have seen, equation (17) with a periodic potentialU(x) always has a solution
having a periodic logarithmic derivative. The proven theorem allows us to conclude that
for all even-degree polynomial inu = e−ax potentials, except the Morse potential, these
solutions always have an infinite number of zeros in the stripG : | Im(x)| 6 π/a. If the
number of zeros in the stripG is infinite, integral (3) cannot be used for quantization.
Therefore, in the general case of even-degree polynomial inu = e−ax potentials, one can
expect the WKB quantization rule to reproduce exact energy spectrum only in the case of
the Morse potential.

4. Remarks and prospects

We have shown that the success of the WKB quantization rule for the Morse Hamiltonian
was due to the periodicity property of the logarithmic derivatives of the Morse Hamiltonian
eigenfunctions. We have shown that this property of wavefunctions singles out the Morse
potential from the class of even-degree polynomial in the variableu = e−ax potentials.
Whether one can enlarge this class or find other potentials having the property that the
logarithmic derivatives of the bound-state wavefunctions are periodic functions, is an
interesting question. We believe it deserves further consideration.
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